Journal of Parallel and Distributed Computing 57, 166-187 (1999) ®
Article ID jpdc.1998.1525, available online at http://www.idealibrary.com on "lE%l.

Communication-Efficient Sorting Algorithms on
Reconfigurable Array of Processors With
Slotted Optical Buses'

Mounir Hamdi,*' 2 Chunming Qiao,” Yi Pan,* and J. Tong*

*Department of Computer Science, Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong;
tDepartment of Electrical and Computer Engineering,
State University of New York at Buffalo, Amherst, New York 14260,
*Department of Computer Science, University of Dayton, Dayton, Ohio 45469-2160

Received February 21, 1997; accepted December 9, 1998

The reconfigurable array with slotted optical buses (RASOB) has recently
received a lot of attention from the research community. In this paper, we
first discuss the reconfiguration methods and communication capabilities of
the RASOB architecture. Then, we use this architecture for the implementa-
tion of efficient sorting algorithms on the 1D RASOB and the 2D RASOB.
Our parallel sorting algorithm on the 1D RASOB is based on an efficient
divide-and-conquer scheme. It sorts N data items using N processors in O(k)
communication cycles where k is the size of the data items to be sorted in
bits. We further develop a parallel sorting algorithm on the 2D RASOB
based on the sorting algorithm on the 1D RASOB in conjunction with the
well known Rotatesort algorithm. Similarly, this algorithm sorts N data items
on a 2D RASOB of size N in O(k) communication cycles. These sorting
algorithms are much more efficient than state-of-the-art sorting algorithms
on reconfigurable arrays of processors with electronic buses using the same
number of processors. © 1999 Academic Press

Key Words: parallel computing; sorting; optical communication; recon-
figurable networks.

1. INTRODUCTION

Optical interconnects can offer many advantages over their electronic counter-
parts including high connection density and relaxed bandwidth-distance product.
As a result, they will soon be a viable alternative for multiprocessor interconnec-
tions [7, 8, 13, 17]. Recently, a large body of research has been devoted to the

! This research work was supported in part by the Hong Kong Research Grant Council under the

Grant RGC/HKUST 100/92E.
2 Corresponding author. E-mail: hamdi@cs.ust.hk.

0743-7315/99 $30.00 166
Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.

COMMUNICATION-EFFICIENT SORTING ALGORITHMS 167

technologies [6, 22, 40], architectures [9, 10, 29, 30, 34], and algorithm develop-
ment [11, 27, 28, 31-33, 35, 36] for optically interconnected parallel computer
systems. In particular, the reconfigurable array with slotted optical buses (RASOB)
architecture [34, 35] has attracted the attention of many researchers in the recent
past owing to its promise in superior performance. In this paper, we first describe
the RASOB architecture. Then, we present the efficient implementation of several
sorting algorithms on RASOB.

RASOB possesses many desirable features which include rich connectivities and
low hardware and control complexities. It adopts a two-dimensional structure in
order to maintain a reasonable optical path length even when scaled to a large
number of nodes. Unlike ordinary 2D structures with row and column buses,
RASOB can establish an all-optical path between two nodes that are neither at the
same row nor at the same column. RASOB is also unique in that it uses only a
single 2 x 2 switch at each intersection of a row bus and a column bus, resulting in
a much lower hardware complexity than other reconfigurable meshes such as those
in [10, 30]. More importantly, all the switches in RASOB are set to the same state
at the same time, and hence, switch control is extremely simple. However, RASOB
has one constraint: no more than one processor, at the same row, may send
messages to the processors at the same column in one communication cycle (to be
defined later). Consequently, it makes it challenging, yet interesting, to develop
efficient algorithms on RASOB.

Of particular interest to us in this paper is the implementation of parallel sorting
algorithms on RASOB. Because of its fundamental importance, sorting is one of the
most extensively studied computing problems. Many researchers have developed
various parallel algorithms to speed up sorting on different parallel computation
models [1, 19]. In particular, fast state-of-the-art sorting algorithms were presented
recently for various models of processor arrays with reconfigurable electronic buses
[21]. Wang et al. proposed a constant time algorithms using O(N?) processors
[39]. Using the Columnsort technique proposed by Leighton [18], Ben-Asher et al.
proposed an O(4*) time sorting algorithm using O(N'*+2*@3") processors for ¢ >2
[4]; but Jang et al. proposed a constant time sorting algorithm using O(N?)
processors [12]. Recently, Nigam and Sahni proposed two simpler constant time
sorting algorithms when compared to that of Jang et al. using O(N?) processors
[26]. Finally Kao et al. proposed a constant time sorting algorithm using O(N>?)
processors under the assumption of a very wide data bus between the processors
[14].

Although very fast, all these algorithms require the number of processors to be
larger than N to achieve that speed. However, when the size of data items to be
sorted, N, is equal to the number of processors, it was shown that the recon-
figurable array of processors with electronic buses cannot sort in better than O(N)
time [21, 25].

The sorting algorithms presented in this paper for RASOB use the same number
of processors as the number data items to be sorted. Yet they are almost as fast as
the state-of-the-art sorting algorithms which employ a much larger number of
processors. This is an indication of the superiority of RASOB as compared to array
of processors with reconfigurable electronic buses.

168 HAMDI ET AL.

The rest of the paper is organized as follows. Section 2 describes the RASOB
architecture. In Section 3, we give the detailed design and analysis of our sorting
algorithms on a 1D RASOB which is based on an efficient divide-and-conquer
technique. Then, we use this sorting algorithm in conjunction with the well known
Rotatesort algorithm to implement our second routing algorithm on a 2D RASOB.
Finally, we conclude the paper in Section 4.

2. ARCHITECTURAL MODEL

Figure 1 illustrates the architecture of a 2D RASOB. As shown in Fig. 1a, there
are n folded row buses and n folded column buses interconnecting the processor
array. Each processor has a transmitting interface to the upper segment of a row
bus, and two receiving interfaces to the lower segment of the row bus and the right
segment of a column bus, respectively. Hereafter, we refer to each row or column
of a 2D RASOB as a 1D RASOB, and unless specified otherwise, use the term
RASOB to denote a 2D RASOB.

An important architectural feature of the RASOB is that a 2 x 2 electro-optical
switch is placed at the intersection of a row and a column bus, as shown in Fig. 1b.
When the switch is set to “straight,” a message arriving along a row bus will
continue propagating on that row bus; otherwise, the message will be switched to
the column bus instead. During a specific period, all the switches at a given row are
set to straight and messages propagate only on a row bus. As a result, processors
at a row communicate with each other at the same row. This type of communica-
tions is referred to as “row communications” and the period during which row
communications is accomplished is referred to as a row communication cycle. A
processor may also communicate with a processor at a different row, which may or
may not be at a different column. This type of communications is referred to as
“column communications” and is accomplished by switching the message from a row
bus to the desired column bus during a period called column communication cycle.
In doing so, the switches are set to “cross” for the duration of the message and then
changed back to the “straight” state. Due to the high switching speed (tens to
hundreds of picoseconds) [2], the control overhead incurred when changing from
one phase to another is almost negligible.

An interesting feature of RASOB is that all the switches are set to the same state
at the same time. This greatly simplifies the switch control, which is often done in
slow electronics. Another interesting feature of RASOB is that the same architecture
may support both SIMD and MIMD modes of parallel computing. In an SIMD
mode, each processor knows whom and when to transmit or to receive from. As a
result, desired communications can be accomplished by letting the source send a
message at a specific point in time and by letting the destination receive the message
at another specific point in time. To support MIMD mode of computation in an
RASOB, an all-optical addressing mechanism, termed coincident pulse addressing
[6, 207, can be used. However, it makes the architecture of RASOB slightly more
complex. We note that as in all optical bus based architectures employing time
division multiplexing (or slotted) communications, synchronization is a crucial issue
in RASOB. The larger fan-out, less power loss, better noise immunity and other

COMMUNICATION-EFFICIENT SORTING ALGORITHMS 169

a Columnbus 1 Column bus 2 Column bus n
Row bus 1
[] i 1]
L L i
- - - Row bus 2
] M 1
i L[L]
1 s \]
\/ 1 J /]
] 1 '
- - o= Row bus n
[Ml M
LL/ LJ_/ LJ\—/
b From a column bus
Straight

From a row bus » To arow bus

=T
—] =

Cross

A 4

b

v

To a column bus

FIG. 1. (a) The architecture of RASOB, and (b) A switch interconnecting a row and a column bus.

desirable features of optics makes it possible to distribute a high-frequency global
clock to hundreds of receiver modules with little clock skew [15, 38]. In addition,
optical data signals encounter small jitters when propagating in single-mode fibers
for less than one kilometer even at a speed as high as 2.5 Gbps [3, 37]. These jitters
can be tolerated by using narrow (e.g., 10 bits) guard bands at each end of a time
slot (up to few hundreds of bits).

In the following subsections, we first illustrate row and column communications,
and then discuss both hardware and control complexities of an RASOB as well as
its connectivities.

170 HAMDI ET AL.

2.1. Row Communication

In a row communication cycle, each row bus operates independently from the
others so it is sufficient to describe just one row bus (e.g., row bus r), as shown in
Fig. 2. In the following presentation, we will denote the processors at row r from
left to right by p(r, 1), p(r, 2),..., and p(r, n), respectively.

There are two important optical transmission properties, namely, unidirectional
proagationand predictable propagation delay of the optical signals, that make con-
current access of an optical bus possible. More specifically, with an appropriate
spatial separation between the neighboring processors, message collision can be
avoided even when the processors are transmitting messages concurrently [9, 10,
11, 24, 30, 34]. In the following discussions, we assume that each processor on a
row bus is separated in time by D =»bhw+J (seconds) from its neighbors, where b
is the maximal length of a packet in bits, w is the optical pulse width (or bit dura-
tion) in seconds, and 0 > 0 is used as guard bands to tolerate synchronization error
to a certain degree. This temporal separation can be achieved by separating the two
neighboring transmitter interfaces on the upper segment as well as the receiver inter-
faces on the lower segment of a row bus with a fiber length D x ¢, where c is the
speed of light in the fiber, as shown in Fig. 2. Without loss of generality, we assume
that the length of the folded part, which is the separation of the transmitter and
receiver interface of p(r, 1), is also made equivalent to D.

We may use the train loading/unloading model to describe the operations in a
row communication cycle (Slotted communication). Let us imagine that at the
beginning of a row communication cycle, a train (or motorcade) of n cars (commu-
nications slots) is originated at the rightmost end of the upper segment of the row
bus. Each car can be regarded as an empty packet slot with a duration of D and
is numbered 1 through n from left to right. During a row communication cycle, the
switches that connect the row bus with column buses are in the “straight” state so
that the train will run through the lower segment of the row bus. A simple assign-
ment of the cars is to let processor p(r, 1) use car 1 for sending its packet, let p(r, 2)
use car 2 for sending its packet and so on.

Train loading

D
crl] | w2]
D p(r, 1) p(r,2) = = = p(r, n)
D .
> Train unloading

FIG. 2. Train loading/unloading on a row bus.

COMMUNICATION-EFFICIENT SORTING ALGORITHMS 171

With this assignment of the cars, the time when p(r, i) may transmit its packet,
relative to the beginning of the row communication cycle, is given by

RowSend[(r,i)]=(i—1)D+(n—i)D=(n—1)D. (1)

As a result, all processors will be transmitting simultaneously because the transmit-
ting time does not depend on i. In addition, a receiving processor can determine the
exact time when the car carrying the packet will arrive at its receiver interface.
More specifically, if processor p(r, i) is expecting a packet sent by p(r, j), it can
calculate the time it should pick up the packet as below,

RowRec[(r, i)« (r,j)]=(n—1)D+(i+j—1)D=(n+i+;—2)D. (2)

By placing all the processors under a synchronized control and letting each processor
send and receive at specific points in time as in Egs. (1) and (2), the row bus can
be reconfigured into a variety of interconnection patterns.

2.2. Column Communication

If a processor needs to communicate with another processor at a different row,
it has to send a packet in a column communication cycle. The train loading/unload-
ing model used previously is also useful in illustrating the principles involved in
column communications. More specifically, we let car 1 of the train make a turn,
from the lower segment of a row bus, onto column bus 7, car 2 make a turn onto
column bus (n—1), and so on. For simplicity, we assume that the switches are
placed near the receiver interfaces so that the propagation delay between a switch
and its nearby receiver is almost negligible. This also implies that the switches are
placed D apart from each other.

Similar to Eq. (2), we can determine the time that car k arrives at switch (n—k +1)
to be

SwitchArvI[(r, n —k + 1) < (r, k)] = (2n— 1) D. (3)

Since the right side of the equation does not contain k, every car arrives at its
turning point at the same time. Therefore, one may set the switches on a row bus
to “cross” simultaneously and by doing this, the n packets in the train are switched
onto their respective destination columns, one packet per each column. This arrange-
ment implies that during a column communication cycle, two or more processors
at the same row cannot send packets destined to the same column.

If p(i, j) needs to communicate with p(r, k), where r #1i, p(i,j) have to transmit
(or load) a packet into car(n—k+1). We can determine the time for p(i, j) to
transmit its packet to be

ColSend[(i, /) = (r, k)] =(n—k)D + (n—j)D = (2n — j— k) D. (4)

172 HAMDI ET AL.

By separating the adjacent row buses by D, a column bus will look like a row
bus that is turned 90° counterclockwise after the packets are switched. More specifi-
cally, that every row bus switches a packet onto a column bus at the same time is
similar to the case where packets are transmitted in a row bus simultaneously. With
as much as D separation between every two row buses, there will be again a train
of n cars, each carrying a packet, formed on the left segment of a column bus.
Hence, we can determine the time for p(r, k) to pick up the packet at the its receiver
interface on the column bus, which is sent by p(i, j), to be

ColRec[(r, k) < (i, j)]1= (2n+i+r—2)D. (5)

2.3. Connectivity and Complexity

Software reconfiguration can be performed with little control overhead because
each of Egs. (1) to (5) involves simple arithmetic calculations. In addition, the
hardware complexity of the proposed architecture is low because each processor
uses only one two-state 2 x 2 switch and has only one transmitter. Although two
receiver interfaces are needed by each processor, a single high-speed electronic
receiving circuit may be shared among these two interfaces. As a comparison, most
mesh-based reconfigurable architectures would require at least an equal number of
switches having four or more states and four I/O interfaces per each processor
[21,25].

Despite the low control and hardware complexities, the RASOB provides strong
connectivities due to the following characteristics: First, a direct connection between
any two processors can be established. The existence of such a direct “all-optical”
path is important, because conversions between optical and electronic signals
required for buffering and address decoding at intermediate nodes are costly.
Second, reconfiguration is flexible as one may interleave row and column communi-
cation cycles in many ways to provide the communication band-width required by
an application. Finally, since only a portion of optical power is tapped off at each
receiver interface, multicasting can be supported simply by programming multiple
receivers to receive at different points in time during the same communication cycle.
Noting that the one-to-one and broadcast are special cases of multicasting, we may
summarize the communication capabilities of the RASOB below:

o All processors at row i can multicast to the processors at the same row at
the same time; and such a row-to-row multicasting can be performed on all n rows
simultaneously.

e All processors at column j can multicast to the processors at the same
column at the same time; and such a column-to-column multicasting can be performed
on all » columns simultaneously.

e p(i, j) can multicast to several processors at any column k and such a
processor-to-column multicasting can be performed by all the n? processors at the
same time, with a restriction being that two or more processors at the same row i
cannot multicast to the same column k at the same time.

COMMUNICATION-EFFICIENT SORTING ALGORITHMS 173

Note that while the first two items on the list, by themselves, mean that the
RASOB is at least as powerful as any mesh with row and column buses [21], the
third item clearly shows that the RASOB has a stronger connectivity than other
meshes with row and column buses. In addition, we note that the RASOB has
many other capabilities that are not included in this list [9, 30, 34] but may be
deducted from its basic features described in the previous two subsections. For
example, simulcasting, in which a processor sends different messages to different
processors simultaneously can be supported by assigning more than one car to a
source processor in a given communication cycle.

3. ALGORITHM DEVELOPMENT

Although the RASOB has a strong connectivity, it, like many practically scalable
architectures, has a weaker connectivity than a completely connected network. The
capabilities as well as restrictions of the architecture makes it an interesting yet
challenging task to design efficient algorithms for the RASOB. In designing algo-
rithms for the RASOB, one may use the idea proposed in [10, 34] to partition the
set of connections required by an application into subsets such that the connections
in each subset can be established in a row communication cycle or a column
communication cycle. However, such a partition may not result in optimal (i.e.,
minimal) number of communication cycles and therefore a customized design may
be necessary. As an example of how one can take advantage of the capabilities
while overcoming the restrictions of the RASOB architecture, we develop efficient
sorting algorithms for the 1D RASOB and the 2D RASOB which outperform state-
of-the-art sorting algorithms on the various models of arrays of processors with
reconfigurable electronic buses.

3.1. Sorting on a Linear RASOB (N = P)

The sorting problem can be defined as the rearrangement of N data items so that
they are in ascending or descending order. Given a sequence SQ = {s¢, 1, ., Sy_1 |
of N data items, a linear ordering “<” is defined in SQ and N is an integer.
Initially, the data items of SQ are permuted in a random order. The purpose of
sorting is to arrange the data items of SQ into a new sequence SQ' = {sp, 57, ., Sy_1 |
such that s;<s;, for i=0, 1, .., N—2. If two data items s, and s; are equal, then
s; is taken to be the larger of the two data items if i > j; otherwise s; is the larger
data item.

Our sorting algorithm on a 1D RASOB, which sorts N data items on P processors,
where N =P, uses a divide-and-conquer approach to sort the data items as follows.
First, we divide all the data items into two groups SQg and SQ;, where SQ¢=
{Sog> S1gs s 815; and SO = {sg, 81, .., S, } such that each data element of SQy, s;
is smaller than each data element of SO, s;. However, the data elements of SQg
and the data elements of SQ; may not be sorted yet. In the next step of our division
process, we divide the data elements of SQg into two subgroups such that each data
element of the first subgroup is smaller than each data element of the second subgroup.
We do the same thing for the data elements of SQ,. We continue this division

174 HAMDI ET AL.

(sQ
/ \
(s (s)

% &

OOOO ¢ s e O OO0

FIG. 3. The general idea of the divide-and-conquer sorting algorithm on a 1D RASOB.

process until the size of each subgroup is equal to 1, in which case all the data
elements will be sorted in the 1D RASOB. Figure 3 further illustrates this division
scheme.

The detailed steps of our recursive sorting algorithm on a 1D RASOB are described
next.

Given N data items, let each data item be represented by k binary bits and distri-
buted one data item per processor in a 1D RASOB. Hereafter, two processors are
said to be in the same group as the data items they hold belong to the same group.
Each processor also holds two variables, namely START and END, which repre-
sent the index of the left-most processor and the index of the right-most processor
within the same group, respectively. At the beginning of the sorting algorithm (i.e.,
before any division of the data elements), all processors belong to a single group,
and the index of the leftmost processor is 1 (i.e., START =1). Similarly, at the
beginning of the sorting algorithm, the variable END is equal to N which is the
index of the rightmost processor of the group. During the sorting algorithm, each
processor maintains and updates the values of these two variables so that it knows
the members of its own group. Members of the same group must have the same
values of START and END. We denote START, and END, to be the values of the
variables START and END of processor p(i).

Our sorting algorithm performs k iterations, where each iteration performs the
following eight steps:

PrOCEDURE SORT.
During iteration 7 (/=1 to k):

1. Each processor p(i) broadcasts the data item it holds to p(START,;),
P(START,;), .., p(END,), including itself, if the /th most significant bit of
its data item is equal to 0. After this step, the RASOB processors will contain
a variable number of data items in their respective receiving buffers.

COMMUNICATION-EFFICIENT SORTING ALGORITHMS 175

2. Each processor p(i) checks its receiving buffer if it contains an (i — START;,
+ 1)th data item. If so, it marks the data down and does a type I replacement
which is described in step 5 of the algorithm. Moreover, it clears its receiving
buffer. The value of (i —START,;+ 1) represents the position of p(i) in its
subgroup, starting from left to right. Processor p(i) gets the (i — START,; + 1)th
data item in order to let the processors on its left get data items of smaller values
since the /th significant bit is 0. As a result, the processors on its left side can
form their own subgroup later.

3. This is analogous to Step 1 above. Each processor p(i) broadcasts the data
item it is holding to p(START;), p(START, + 1), ..., p(END,), including itself, if
the Ith most significant bit of its data item is equal to 1. After this step, the
RASOB processors will contain a variable number of data items in their
respective receiving buffers.

4. Each processor p(i) checks its receiving buffer if it contains an (END,; —1 + 1)th
data item. If so, it marks the data down and does a type II replacement which
is described in step 5 of the algorithm. Moreover, it clears its receiving buffer.
The value of (END;—i+ 1) represents the position of p(i) in its subgroup,
starting from right to left. Processor p(i) gets the (END,; —i+ 1)th data item
in order to let the processors on its right get data items of larger values since
the Ith significant bit is 1. As a result, the processors on its right side can
form their own subgroup later.

5. Each processor does a type I replacement or a type II replacement by replac-
ing the data item it is holding with the marked data item.

6. Each processor p(i) sends a message to p(i—1) only if i—1>START, and
sends a message to p(i+ 1) only if i+ 1<END, to find out what type of
replacement they have performed. In other words, processor p(i) finds out
whether the processor on its immediate left and the processor on its immediate
right belong to the same group or not since p(START,) has no processor on
its immediate left belonging to the same group and p(END;) has no processor
on its immediate right belonging to the same group.

7. For each processor p(i), if it has performed a type I replacement and finds
that i+ 1 <END,; and p(i + 1) has performed a type II replacement, then p(i)
sends a message to p(START;), p(START;+1), ..., p(i) informing them to
change their variable END to be equal to i.

8. For each processor p(i), if it has performed a type II replacement and finds
that i—1>=START, and p(i—1) has performed a type I replacement, then
p(i) sends a message to p(i), p(i+ 1), .., p(END,) informing them to change
their variable START to be equal to i.

End {Procedure SORT}

We note here that Step 7 and Step 8 are used to divide a group of data items into
two subgroups such that the value of each data element of the first subgroup is
smaller than the value of each data element in the second subgroup. Further, within
one iteration, say iteration x, of the above algorithm, each processor performs just

176 HAMDI ET AL.

one type of replacement (i.e., type I or type II) since its xth most significant bit can
be either 0 or 1 but not both at the same time. In the Appendix of this paper, we
illustrate a step-by-step example of the application of the above algorithm to sort
10 data items on a 1D RASOB.

Now, we are ready to present the following theorem.

THEOREM 1. The SORT procedure can be computed in O(k) row communication
cycles on a 1D RASOB, where k is the size of the data elements to be sorted in bits.

Proof. Step 1 and Step 3 of Procedure SORT procedure are simple broadcast
operations on a 1D RASOB, where the corresponding processors load their respec-
tive data items into the appropriate car of the transmission trainn of slots. Each of
these cars (slots) will be read by all processors in a 1D RASOB in a single row
communication cycle. Consequently, Step 1 and Step 3 of Procedure SORT take
O(1) communication cycles. Step 2, Step 4, and Step 5 of Procedure SORT each
takes O(1) time since they simply involve accessing the receiving buffers of the
processors and the replacement of the data items they are holding. Step 6 is a simple
routing pattern between neighboring processors which can be accomplished in a
single row communication cycle. Finally, Step 7 and Step 8 of Procedure SORT
involve a broadcasting operation which also takes a single row communication
cycle. Hence, each iteration of Procedure SORT takes O(1) row communication
cycles. Consequently, the whole sorting algorithm on a 1D RASOB takes O(k) row
communication cycles since the number of iterations of Procedure SORT is k. |

We also note here that under most practical situations k rarely exceeds 32. As a
result, the communication time complexity of this sorting algorithm on a 1D RASOB
is almost constant. Furthermore, it was argued in [30] that for reasonable size
RASOB:s (say up to 10,000), the duration of a communication cycle is comparable
to the time for a CPU operation and may be assumed constant. Finally, we have
to realize that no PRAM algorithm can achieve the above performance, since the
lower bound theorem of [18] implies that sorting of n bits on the CRCW PRAM
will need Q(log n/log log n) time, given only a polynominal number of processors.

One possible drawback of the above Procedure SORT is that it requires each
processor of the 1D RASOB to have a receiving buffer of size V, where N is the size
of the data items to be sorted. However, the above drawback can be overcome by
simply installing a counter at each processor and requiring the size of the receiving
buffers be equal to just 1 (e.g., they can hold just a single data item). During each
iteration of Procedure SORT, each processor is required to replace the data item it
is holding either by the (i —START,;+ 1)th data item it receives in its buffer in
Step 2, or by the (END,—i+ 11)th data item it receives in its buffer in Step 4. We
can use these counters to keep track of the data item that the appropriate processor
is interested in. More specifically, we first set the counter of each processor to 0
before the execution of Step 2 and before the execution of Step4 of Procedure
SORT. Then, we increment the counter by 1 for each received data item in the
buffer of the processor. Since the receiving buffers of each processor can hold only
a single data item, every new incoming data item will replace the old one, until the
counter is equal to i—START;+1 if Step 2 is being executed or the counter is

COMMUNICATION-EFFICIENT SORTING ALGORITHMS 177

equal to END,—i+ 1 if Step 4 is being executed. Afterwards, each processor p(i)
stops accepting any more messages in its receiving buffer for the whole duration of
either Step 2 or Step 4. Consequently, right after Step 2 or Step4 of Procedure
SORT, the data item inside the receiving buffer of each processor is the one needed
to perform the replacement in Step 5.

3.2. Sorting on a Linear RASOB (P <N).

In the previous subsection, we have presented the implementation of a sorting
algorithm on a 1D RASOB, where the number of data items to be sorted, N, is
equal to the number of processors, P. At first glance, it may seem that such an
algorithm is very limited. For example, what if we want to sort N data items on a
P-processor 1D RASOB, where P < N? Fortunately, there are several good methods
for converting an algorithm that was designed for a P,-processor network so that
it can run on a P,-processor network (where P, < P,) with minimum slowdown
[1, 21]. The only requirement is that the processors of G, be coarser-grained than
the processors of G,. For example, in order to sort N data items on a P-processor
1D RASOB, where P < N, each processor would have to store at least N/P data
items for the RASOB to be able to sort N items. As a result, the granularity of the
processors should be large. The method consists of having each processor of G,
simulate [P, /P,] processors of G, . Typically this will induce a slowdown of [P, /P, 7,
which is to be expected since we are using a factor of P,/P, fewer processors. As
an example, consider the problem of simulating a P,-processor 1D RASOB G, on
a P,-processor 1D RASOB G,. There are many ways of performing the simulation,
but the simplest is to assign the tasks of processors [P,/P,(i—1)+1, [P,/P,7]
(i—1)+2,..,TP,/P,7i of G, to processor i of G, for 1 <i<P,. For example, see
Fig. 4. Each step of G, can then be simulated in [P, /P,] steps on G,. Hence, any
algorithm that runs in 7 steps on G, can be run in 7[P, P,] on G,.

By applying the above technique, we can sort N data items on a P-processor 1D
RASOB, where P <N, in O(kN/P) steps using Procedure SORT described in the
previous subsection.

The preceding method provides a good answer to the question of what to do
when P < N. In fact, the same technique will work for virtually all types of algorithms
designed for RASOB where the input data is equal to the number of processor. As
a consequence, the algorithms designed in this paper will focus our attention on a
RASOB architecture that grows with the size of the input without losing generality,
secure in the knowledge that the resulting algorithms can later be scaled to any
smaller size RASOB.

00 00|[00 ol [00 0P

FIG. 4. Simulating a 12-processor 1D RASOB G, on a 3-processor 1D RASOB G,. Each processor
in G, is responsible for simulating 4 processors of G,. Hence, every step of G, takes 4 steps in G,, and
any algorithm that runs in 7 steps on G, can be made to run in 4T steps in G,.

178 HAMDI ET AL.

3.3. Sorting on a 2D RASOB

Procedure SORT on the 1D RASOB shown in the previous section can be easily
extended to be implemented on a 2D RASOB while retaining the same communica-
tion time complexity, O(k) cycles. One way to extend Procedure SORT for its
implementation on a 2D RASOB is to use Leighton’s Columnsort algorithm [18]
or to use Maberg and Gafni Rotatesort algorithm [23]. In our implementation of
Procedure SORT on the 2D RASOB, we use the Rotatesort algorithm. However,
the Columnsort implementation can be done in a similar way.

The Rotatesort algorithm is a row—column sorting technique proposed originally
for the two-dimensional mesh processor arrays [23]. As this paper is not parti-
cularly concerned with 2D mesh arrays, the main interest is in Rotatesort as it
applies to a 2D arrays of data items to be sorted. More precisely, the fact that
Rotatesort partitions a set of N data items into subsets (rows and columns), which
can be sorted independently and efficiently on a 2D RASOB using the 1D RASOB
SORT procedure.

Given N = RS data clements arranged as a 2D R x S array, the Rotatesort techni-
que [23] sorts the N data elements by alternately transforming the rows and
columns of the array. The number of row and column communication cycles will
be constant (14 or 16 communication cycles) and will be shown later. Each trans-
formation phase consists of either performing a circular shift operation on the
elements of each row or each column.

During Rotatesort, the R x S array of data elements is partitioned as shown in
Fig. 5. A vertical strip (or, horizontal strip) is an R x S? (or, S¥?x S) subarray of
data elements. Also, a block is a S'? x S subarray of data elements. The algorithm
as presented in [23] assumes that R=2" and S =2° where s is an even integer and
r=s/2. However, other values of R and S can be used with little modification to
the algorithm. The algorithm description can be facilitated by defining the macros
(operations):

e Macro BALANCE applies to a subarray of size u x v and consists of three
steps:
a. Sort all columns downward.
b. Rotate each row i rightward by (i mod v) positions.
c. Sort all columns downward.

e Macro UNBLOCK distributes the data elements of each block among all
columns. It consists of two steps:

a. Rotate each row i rightward by (iS'?> mod S) positions.
b. Sort all columns downward.

e Macro SHEAR: equivalent to performing one iteration of the shear-sort
algorithm [1]. It consists of two steps:

COMMUNICATION-EFFICIENT SORTING ALGORITHMS 179

S s1/2
- «—>
I Sl /2
1/2
] Ls
51/2
e—>
Vertical Strips Horizontal Strips Blocks

FIG. 5. Partitions of the R x S array.

a. Sort all even-numbered rows rightward and all odd-numbered rows
leftward.

b. Sort all columns downward.
The Rotatesort algorithm can be described in terms of these macros as

PROCEDURE Rotatesort.

(1) Perform BALANCE on each vertical slice.

(2) Perform UNBLOCK on the entire array.

(3) Perform BALANCE on each horizontal slice.

(4) Perform UNBLOCK on the entire array.

(5) Perform three iterations of SHEAR on the array.
(6) Sort all rows rightward.

Following the applications of the above macros, the R x S array will be sorted in
row-major order. It is clear that the above algorithm uses eight column communi-
cation cycles and nine row communication cycles, for a total of 17 communication
cycles. However, since Step 3c) (i.e., step ¢ of the second BALANCE operation) and
Step 4a) both involve row transformations, the two steps can be combined into one
row transformation, thus reducing the total number of communication cycles to 16.
Furthermore, when R < S'? then the number of communication cycles can be
reduced to 14.

Now, let us examine the time complexity of this algorithm when implemented on
a 2D RASOB. The BALANCE macro consists of two sorting steps along the
columns of the 2D RASOB. That is, we need to perform two sorting steps on a
1D RASOB using Procedure SORT shown in the previous section. Thus, the two
sorting steps of the BALANCE macro can be performed on a 2D RASOB in O(k)
row communication cycles. The second step needed in the BALANCE macro is the
rotation of each row i by (i mod v) positions. This can be easily accomplished in a
single row communication cycle on the 2D RASOB using the loading/unloading
train model. Hence, the BALANCE macro can be executed on a 2D RASOB in
O(k) communication cycles. The UNBLOCK macro consists of one sorting step

180 HAMDI ET AL.

along the columns which takes O(k) column communication cycles as shown
above, and one rotation step of all the rows rightward which takes a single row
communication cycle. Therefore, the UNBLOCK macro can be executed on a 2D
RASOB in O(k) communication cycles. Finally the SHEAR macro which consists
of two sorting steps along the rows and along the columns also can also be executed
on a 2D RASOB in O(k) communication cycles using Procedure SORT of the 1D
RASOB. Consequently, the whole Rotatesort procedure can be executed on the 2D
RASOB in O(k) communication cycles, where k is the size of data elements to be
sorted in bits.

As mentioned previously, under most practical situations k rarely exceeds 32.
Note that, the total number of cycles is 10’s of k; therefore, the constant in O(k)
is in the 10’s. Given k<32, our sorting algorithm on a 2D RASOB is almost a
constant-time sorting. In fact, given RASOB’s capability of supporting communica-
tions between processors at different rows and different columns, the number of
cycles needed can be further reduced by eliminating the rotation on each row in the
macros BALANCE and UNBLOCK before sorting each column. A step-by-step
application of the Rotatesort procedure is illustrated in the Appendix of this paper.

This leads to the following theorem.

THEOREM 2. Sorting N data items can be computed in O(k) communication cycles
on a 2D RASOB size N, where k is the size of the data items to be sorted in bits.

4. CONCLUSION

The reconfigurable array with slotted optical buses (RASOB) architecture has
recently been proposed as an alternative to reconfigurable arrays with electronic
buses. It takes advantage of the unique properties of optical transmission to achieve
flexible reconfiguration and strong connectivities with low hardware and control
complexity. In this paper, we used this novel architecture for the implementation of
two efficient sorting algorithms. The first sorting algorithm has been implemented
on a 1D RASOB. This sorting algorithm, which is based on a divide-and-conquer
approach, has a communication time complexity of O(k) cycles, where k is the size
of the data elements to be sorted in bits. The second algorithm has been implemented
on a 2D RASOB. It uses the sorting algorithms implemented for the 1D RASOB,
in conjunction with the well-known Rotatesort algorithm to achieve an O(k) com-
munication time complexity. Both of these algorithms assume that the size of the
data elements to be sorted is equal to the size of the number of processors. However,
they can be extended easily to the case where the size of the data elements is larger
than the number of processors. Moreover, the developed algorithms are more
efficient that state-of-the-art sorting algorithms which have been recently implemented
on various models of array of processors with reconfigurable electronic buses.

APPENDIX A

A step-by-step example of the application of Procedure SORT of Section 3.1 to
sort 10 data items on a 1D RASOB is given by the following Figs. a—m:

COMMUNICATION-EFFICIENT SORTING ALGORITHMS 181

ONONONONONONONONOND

START
END 10 10 10 10 10 10 10 10 10 10
Input | 1101 | 0010 | 1111 | 1000 | 0101 | 1010 | 0111 | 0001 | 1001 | 1110

FIG. a. The initial configuration. The values of START and END are given in decimals and the
values of Input are represented in binary.

ONONONONONONONONORD,

Buffer 1|0010* | 0010 | 0010 | 0010 | 0010 | 0010 | 0010 | 0010 | 0010 | 0010
Buffer 2| 0101 [0101*| 0101 | 0101 | 0101 | 0101 | 0101 | 0101 | 0101 | 0101
Buffer 3| 0111 | 0111 {0111*| 0111 | 0111 | O111 | O111 | 0111 | 0111 | O111
Buffer 4| 0001 | 0001 | 0001 [0001*| 0001 | 0001 | 0001 | 0001 | 0001 | 0111
Buffer 5| — — — — — — — — — —

FIG. b. After step 1 of the algorithm. This iteration deals with the first bit of each input number;
*signifies the data item that is doing the replacement.

ONONONONONONONONOND,

Buffer 1| 1101 | 1101 | 1101 | 1101 | 1101 | 1101 | 1101 | 1101 | 1101 |1101*
Buffer 2| 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 | 1111 [1111%*| 1111
Buffer 3| 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |1000* | 1000 | 1000
Buffer 4| 1010 | 1010 | 1010 | 1010 | 1010 | 1010 |1010*| 1010 | 1010 | 1010
Buffer 5| 1001 | 1001 | 1001 | 1001 | 1001 |1001*| 1001 | 1001 | 1001 | 1001
Buffer 6| 1110 | 1110 | 1110 | 1110 |1110*| 1110 | 1110 | 1110 | 1110 | 1110

Buffer7, — | — | — | — | — | — | — | — | — | —

FIG. c. The state of the processors’ receiving buffers after step 3 of the algorithm.

ONONONONONONONONOND,

START
END 4 4 4 4 10 10 10 10 10 10
Input | 0010 | 0101 | 0111 | 0001 | 1110 | 1001 | 1010 | 1000 | 1111 | 1101

FIG. d. The placement of the data elements after step 8 of the algorithm, and the associated values
for START and END.

182 HAMDI ET AL.

ONONONONONONONONOND

Buffer 1|0010* | 0010 | 0010 | 0010 |1001*| 1001 | 1001 | 1001 | 1001 | 1001
Buffer 2| 0001 {0001*| 0001 | 0001 | 1010 |1010*| 1010 | 1010 | 1010 | 1010
Buffer 3| — — — — | 1000 | 1000 |1000*| 1000 | 1000 | 1000

Bufferd| — | — | — | — | — | — | — | — | — | —

FIG. e. The state of the processors’ receiving buffers after step 1 of the second iteration which deals
with the second bit of each input number.

ONONONONONONONONORD,

Buffer 1| 0101 | 0101 | 0101 |0101*| 1110 | 1110 | 1110 | 1110 | 1110 |1110*
Buffer 2| 0111 | 0111 {0111*| 0111 | 1111 | 1111 | 1111 | 1111 [1111%*| 1111
Buffer 3| — — — — | 1101 | 1101 | 1101 |1101*| 1101 | 1101

Buffer 4| — — — — — — _ _ _ _

FIG. f. The state of the processors’ receiving buffers after step 3 of the second iteration.

ONONONONONONONONORD,

END 2 2 4 4 7 7 7 10 10 10
Input | 0010 | 0001 | O111 | 0101 | 1001 | 1010 | 1000 | 1101 | 1111 | 1110

FIG. g. The placement of the data elements after step 8 of the second iteration of the algorithm, and
the associated values for START and END.

ONONONONONONONONOND,

Buffer 1|0001* | 0001 [0101*| 0101 |1001*| 1001 | 1001 |[1101*| 1101 | 1101
Buffer 2| — — — — 1000 | 1000* | 1000 | — — —
Buffer 3| — — —

FIG. h. The state of the processors’ receiving buffers right after step 1 of the third iteration of the
algorithm.

COMMUNICATION-EFFICIENT SORTING ALGORITHMS 183

ONONONONONONONONOND

Buffer 1| 0010 [0010*| 0111 |[O111*| 1010 | 1010 [1010*| 1111
Buffer 2 —

1111 |1111*
_ — — — | 1110 |1110*| 1110

Buffer 3| — —
FIG. i. The state of the processors’ receiving buffers right after step 3 of the third iteration of the

algorithm.

START| 1 2 3 4 5 5 7 8 9 9
END 1 2 3 4 6 6 7 8 10 10
Input | 0001 | 0010 | 0101 | O111 | 1001 | 1000 | 1010 | 1101 | 1110 | 1111

FIG. j. The placement of the data elements after step 8 of the third iteration of the algorithm and
the associated values for START and END.

ONONONONONONONONORD

Buffer 1| — [0010*| — — |[1000*| 1000 |1010*| — |1110*| 1110
Buffer 2

FIG. k. The state of the processors’ receiving buffers right after step 1 of the fourth iteration of the
algorithm.

ONONONONONONONONORD

Buffer 1| 0001 0101*|0111*| 1001 [1001*| — |[1101*| 1111 |1111*
Buffer 2 — —
FIG. I. The state of the processors’ receiving buffers right after step 3 of the fourth iteration of the
algorithm.
START| 1 2 3 4 5 6 7 8 9 10
END 1 2 3 4 5 6 7 8 9 10
Input | 0001 | 0010 | 0101 | O111 | 1000 | 1001 | 1010 | 1101 | 1110 | 1111

FIG. m. The placement of the data elements after step 8 of the fourth iteration of the algorithm, and
the associated values for START and END. This is the end of the algorithm.

184 HAMDI ET AL.

APPENDIX B

A step-by-step application of the Rotatesort Procedure on a 4 x4 2D RASOB is

given by the following Figs. a—i:

1

1019 |14 2 4 (211510 011|415
4 [15]11 |12 6 3|72 213167
611|513 819 1112 819 [11]12
8131710 10151413 1013 (14|15
(a) (b) (c)
0111415 0111123 0111123
6711213 6 |71|4]|5 5161714
819 [11]12 819 (10|12 10|11 8 | 9
14 15|10 |13 14151113 15(12]13 |14
(d) (e) (f)
01111213 0111123 0111123
7014|5/6 71654 405167
10118 |9 819 1011 819 1011
13114 15|13 1514 (13|12 1211314 |15
(g) (h) (i)
REFERENCES

S. G. Akl, “The Design and Analysis of Parallel Algorithms,” Prentice-Hall, Englewood Cliffs, NJ,
1989.

. R. Alferness, L. Buhl, S. Korothy, and R. Tucker, High-speed b-reversal directional coupler switch,

Photonic Switching, OSA Technical Digest 13 (1987), 77-78.

. R. Ballart and Y. C. Chin, SONET: Now it’s the standard optical network, IEEE Commun. Mag.

27, 3 (Mar. 1989), 8-15.

. Y. Ben-Asher, D. Pelg, R. Ramaswami, and A. Shuster, The power of reconfiguration, J. Parallel

Distrib. Comput. 13 (1991), 139-153.

. A. Benner, H. Jordan, and V. Heuring, Optically switched lithium niobate directional couplers for

digital optical computing, in “SPIE Proceedings, Digital Optical Computing IL,” Vol. 1215,
pp. 343-352, SPIE, Bellingham, WA, 1990.

. D. M. Charulli, S. P. Levitan, R. G. Melhem, M. Bidnurkar, R. Ditmore, G. Gravenstreter, Z. Guo,
C. Qiao, M. F. Sakr, and J. P. Teza, Optoelectronic buses for high-performance computing, Proc.
IEEE 82, 11 (Nov. 1994), 1702-1710.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

COMMUNICATION-EFFICIENT SORTING ALGORITHMS 185

R. E. Floren et al., Optical interconnects in the Touchstone supercomputer program, in “SPIE Proc.
Intergrated Optoelectronics for Communication and Processing, October 1991,” Vol. 1582,
pp. 46-54.

. A. Guha, J. Bristow, C. Sullivan, and A. Husain, Optical interconnections for massively parallel

architectures, Appl. Opt. 29, 8 (1980).

. Z. Guo, R. Melhem, R. W. Hall, C. Chiarulli, and S. P. Levitan, Array processors with pipelined

optical busses, J. Parallel Distrib. Comput. 12, 3 (1991), 269-282.

. Z. Guo, Optically interconnected processor arrays with switching capability, J. Parallel and Distri-

buted Computing 23 (1994), 314-329.

. M. Hamdi and Y. Pan, Efficient parallel algorithms on optically interconnected arrays of processors,

IEE Proceedings-Computers and Digital Techniques, Vol. 142, pp. 87-92, March 1995.

. J. Jang and V. K. Prasanna, An optimal sorting algorithm on a reconfigurable mesh, in “Proc. Int.

Parallel Processing Symp.,” pp. 130-137, 1992.

. B. O. Kahle, E. C. Parish, T. A. Lane, and J. A. Quam, Optical interconnects for interprocessor

communications in the connection machine, in “IEEE Conf. on Computer Design,” Oct. 1989.

. T. W. Kao, S. J. Horng, Y. L. Wang, and H. R. Tasi, Designing efficient parallel algorithms on

CRAP, IEEE Trans. Parallel Distrib. (1995), 554-560.

D. Kiefer and V. Swanson, Implementation of optical clock distribution in a supercomputer, Cray
Research Inc., internal report, 1995.

V. P. Kumar and C. S. Raghavendra, Array processors with multiple broadcasting, Journal of
Parallel and Distributed Computing 2 (1987), 173-190.

P. Lalwaney, L. Zenou, A. Ganz, and 1. Koren, Optical interconnects for multiprocessors: Cost
performance analysis, in “Proc. on Frontiers of Mass. Para. Comp.,” pp. 278-285, Oct. 1992.

F. T. Leighton, Tight bounds on the complexity of parallel sorting, IEEE Trans. Comput., (1985),
344-354.

. F. T. Leighton, “Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-

cubes,” pp. 622-624, Morgan Kaufmann, San Mateo, CA, 1992.

S. P. Levitan, D. M. Chiarulli, and R. G. Melhem, Coincident pulse addressing technique for multi-
processor interconnections structures, Appl. Opt. 29, No. 14 (May 1990), 2024-2033.

H. Li and Q. F. Stout (Eds.), “Reconfigurable Massively Parallel Computers,” Prentice-Hall, 1991.
Y. S. Liu et al., Polymer optical interconnect technology (POINT) optoelectronic packaging and
iterconnect for board and backplane applications, in “Proceedings 46th Electronic Components and
Technology Conference,” pp. 308-315, 1996.

J. M. Maberg and E. Gafni, Sorting in constant number of row and column phases on a mesh,
Algorithmica (1988), pp. 561-572.

R. Melhem, D. Chiarulli, and S. Levitan, Space multiplexing of waveguides in optically interconnected
multiprocessor systems, The Computer Journal 32 (4) (1989), 362-369.

R. Miller, V. K. P. Kumar, D. 1. Reisis, and Q. F. Stout, Parallel computations on reconfigurable
meshes, /IEEE Trans. Comp. 42 (1993), 678-692.

M. Nigam and S. Sahni, Sorting » numbers on n X n reconfigurable meshes with buses, Journal of
Parallel and Distributed Computing 23 (1994), pp. 37-48.

Y. Pan, Order statistics on optically interconnected multiprocessor systems, Opt. Laser Technol. 26,
4 (Aug. 1994), pp. 281-287.

Y. Pan and M. Hamdi, Singular value decomposition on processor arrays with pipe-lined bus
systems, Journal of Network and Computer Applications 19, No. 3 (July 1996), 235-248.

Y. Pan and K. Li, Linear array with a reconfigurable pipelined bus system: Concepts and applications,
in “Proceedings 1996 International Conference on Parallel and Distributed Processing Techniques,”
1996.

S. Pavel and S. G. Akl, “On the Power of Arrays with Reconfigurable Optical Buses,” Technical
Report 95-374, Department of Computing and Information Science, Queen’s University, 1995.

186 HAMDI ET AL.

31. S. Pavel and S. G. Akl, Efficient algorithms for the hough transform on arrays with reconfigurable
optical buses, in “Proceedings of the International Parallel Processing Symposium,” pp. 697-701,
1996.

32. S. Pavel and S. G. Akl, Matrix operations using arrays with reconfigurable optical buses, Journal of
Parallel Algorithms and Applications, to appear.

33. C. Qiao, R. G. Melhem, D. M. Chiarulli, and S. P. Levitan, Optical multicasting in linear arrays,
International Journal of Optical Computing 2, No. 1 (April 1991), 31-48.

34. C. Qiao and R. Melhem, Time-division optical communications in multiprocessor arrays, IEEE
Transactions on Computers 42, (5) (May 1993), 577-590.

35. C. Qiao, On designing communication-intensive algorithms for a spanning optical bus based array,
Parallel Processing Letters 5, No. 5 (Sept. 1995), 499-511.

36. S. Rajsekaran and S. Sahni, “Sorting, Selection and Routing on the Array with Reconfigurable
Optical Buses,” Technical Report, Department of Computer and Information Science, University of
Florida, 1996.

37. D. Sarrazin, H. Jordan, and V. Heuring, Fiber optic delay line memory, Applied Optics 29, No. 5
(Feb. 1990), 627-637.

38. S. Tang et al., 1-GHZ clock signal distribution for multiprocessor supercomputer, Proc. Massively
Parallel Processing with Optical Interconnects 96 (1996), 186-191.

39. B. F. Wang, G. H. Chen, and F. C. Lin, Constant time sorting on a processor array with a recon-
figurable bus system, Information Processing Letters (1990), 187-192.

40. C. Zhao, T-h Oh, and R. Chen, General purpose bi-directional optical backplane: high-performance
bus for multiprocessor systems, in “Proc. Massively Parallel Processing with Optical Interconnects,”
pp. 188-194, 1995.

MOUNIR HAMDI received the B.Sc. degree with distinction in Electrical Engineering (Computer
Engineering) from the University of Southwestern Louisiana in 1985, and M.Sc. and Ph.D. degrees in
Electrical Engineering from the University of Pittsburgh in 1987 and 1991, respectively. While at the
University of Pittsburgh, he was a research fellow involved with various research projects on intercon-
nection networks, high-speed communication, parallel algorithms, switching theory, and computer
vision. In 1991 he joined the Computer Science Department at Hong Kong University of Science and
Technology as an Assistant Professor. He is now Associate Professor of Computer Science and Director
of the Computer Engineering Programme. His main areas of research are parallel computing, ATM
packet switching architectures, high-speed networks, and wireless networking. Dr. Hamdi has published
over 80 papers on these areas in various journals, conference proceedings, and book chapters. He was
guest editor of a special issue of Informatica on “optical parallel computing”. He co-founded and co-
chaired the International Workshop on High-Speed Network Computing, is on the editorial board of
the IEEE Communicmations Magazine and Parallel Computing, and has been on the program committee
of various international conferences. Dr. Hamdi received the best paper award at the 12th International
Conference on Information Networking. Dr. Hamdi is a member of IEEE and ACM.

CHUNMING QIAO got his B.S. degree in Computer Science and Engineering in 1985 from the
University of Science and Technology of China (USTC) in Hefei, People’s Republic of China. He
received the Andrew-Mellon Distinguished doctoral fellowship award from the University of Pittsburgh
and later got his Ph.D. degree in computer science there in 1993. Since then, he joined SUNY at Buffalo
as an assistant professor in the ECE department and received a NSF Research Initiation Award (RIA)
in 1994 for his research on fiber-optic interconnection networks. Dr. Qiao’s research interests cover the
two converging areas of computers and communications. They include parallel and distributed comput-
ing and systems, interconnection networks, and photonic switching. Currently, he is conducting NSF
funded research on optical burst switching (OBS) for fiber-optic wavelength division multiplexed
(WDM) networks and internetworks (e.g., IP over WDM). Dr. Qiao has published more than 50 papers
in IEEE Trans. on Computers, IEEE Trans. on Parallel and Distributed Systems, IEEE Trans. on Commu-
nications, and IEEE Trans. on Networking, as well as other fine journals and conference proceedings. He
has served as a co-chair for both the 1997 and 1998 All-optical Networking Conferences, a Program vice

COMMUNICATION-EFFICIENT SORTING ALGORITHMS 187

co-chair for the 1998 International Conference on Computer Communications and Networks (IC3N),
a session organizer/chair at the IEEE MILCOM’96 (the Conference on Military Communications), and
program committee member and session chairs in several other conferences and workshops. He is also
an editor of the Journal on High-Speed Networks (JHSN) and a member of the IEEE Computer Society
and the IEEE Communications Society.

YI PAN was born in Jiangsu, China. He entered Tsinghua University in March 1978 with the highest
college entrance examination score among all 1977 high school graduates in Jiangsu Province. He
received his B.Eng. degree in computer engineering from Tsinghua University, China in 1982 and his
Ph.D. degree in computer science from the University of Pittsburgh in 1991. Dr. Pan joined the Depart-
ment of Computer Science at the University of Dayton, Ohio, in 1991 and has been an associate
professor since 1996. His research interests include parallel algorithms and architectures, optical
communication and computing, distributed computing, task scheduling, and networking. He is an
author of more than 60 research papers, a co-editor of four conference proceedings and a new book
entitled Parallel Computing Using Optical Interconnections, published by Kluwer Academic in 1998, and
a contributor of several book chapters. He has received several awards including the Japan Society for
the Promotion of Science Fellowship (1998), AFOSR Summer Faculty Fellowship (1997), NSF
Research Opportunity Award (1994, 1996), the best paper award from PDPTA °96, and Andrew Mellon
Fellowship from Mellon Foundation (1990). His research has been supported by NSF, AFOSR, U.S. Air
Force, and the state of Ohio. Dr. Pan is currently on the editorial board of the Journal of Supercomput-
ing and the Journal of Parallel and Distributed Computing Practices, and he is an associate editor of the
Internation Journal of Parallel and Distributed Systems and Networks. He has served as a guest editor
of special issues for four international journals: Information Sciences, Parallel Processing Letters, Infor-
matica, and International Journal of Parallel and Distributed Systems and Networks. He is the program
chair of the 10th International Conference on Parallel and Distributed Computing and Systems in 1998,
the conference co-chair of the Fourth International Conference on Computer Science & Informatics in
1998, and the program chair of the 1999 IPPS Workshop on Optics and Computer Science. He has also
served as vice program chair, publicity chair, session chair, or committee member for more than 15
international conferences. Dr. Pan is a senior member of IEEE and a member of the IEEE Computer
Society. He is listed in Men of Achievement and Marquis’ Who’s Who in the Midwest.

J. TONG received his B.Sc. degree from the Computer Science Department at Hong Kong University
of Science and Technology with honor. He participated in this research as part of his final-year thesis.
His areas of interest are algorithms design and analysis and high-performance computing.

	1. INTRODUCTION
	2. ARCHITECTURAL MODEL
	FIG. 1
	FIG. 2

	3. ALGORITHM DEVELOPMENT
	FIG. 3
	FIG. 4
	FIG. 5

	4. CONCLUSION
	APPENDIX A
	FIG. a
	FIG. b
	FIG. c
	FIG. d
	FIG. e
	FIG. f
	FIG. g
	FIG. h
	FIG. i
	FIG. j
	FIG. k
	FIG. l
	FIG. m

	APPENDIX B
	REFERENCES

